Multisorted tree algebra
نویسندگان
چکیده
This paper introduces basic concepts describing a hierarchical algebraic structure called multisorted tree algebra. This structure is constructed by placing multisorted algebra at the bottom of a hierarchy and placing at other intermediate nodes the aggregation of algebras placed at their immediate subordinate nodes. These constructions are different from the one of subalgebras, homomorphic images and product algebras used to characterize varieties in universal algebra theory. The resulting hierarchical algebraic structures cannot be easily classified in common universal algebra varieties. The aggregation method and the fundamental properties of the aggregated algebras have been presented with an illustrative example. Multisorted tree algebras spans multisorted algebra concepts and can be used as modelling framework for building hierarchical abstract data types for information processing in organizations.
منابع مشابه
The Universal Theory of First Order Algebras and Various Reducts
First order formulas in a relational signature can be considered as operations on the relations of an underlying set, giving rise to multisorted algebras we call first order algebras. We present universal axioms so that an algebra satisfies the axioms iff it embeds into a first order algebra. Importantly, our argument is modular and also works for, e.g., the positive existential algebras (where...
متن کاملDeveloping the Algebraic Hierarchy with Type Classes in Coq
We present a new formalization of the algebraic hierarchy in Coq, exploiting its new type class mechanism to make practical a solution formerly thought infeasible. Our approach addresses both traditional challenges as well as new ones resulting from our ambition to build upon this development a library of constructive analysis in which abstraction penalties inhibiting efficient computation are ...
متن کاملCoproducts of Distributive Lattice based Algebras
The analysis of coproducts in varieties of algebras has generally been variety-specific, relying on tools tailored to particular classes of algebras. A recurring theme, however, is the use of a categorical duality. Among the dualities and topological representations in the literature, natural dualities are particularly well behaved with respect to coproduct. Since (multisorted) natural dualitie...
متن کاملA Finitely Axiomatizable Undecidable Equational Theory with Recursively Solvable Word Problems
In this paper we construct a finitely based variety, whose equational theory is undecidable, yet whose word problems are recursively solvable, which solves a problem stated by G. McNulty (1992). The construction produces a discriminator variety with the aforementioned properties starting from a class of structures in some multisorted language (which may include relations), axiomatized by a fini...
متن کاملNEW DIRECTION IN FUZZY TREE AUTOMATA
In this paper, our focus of attention is the proper propagationof fuzzy degrees in determinization of $Nondeterministic$ $Fuzzy$$Finite$ $Tree$ $Automata$ (NFFTA). Initially, two determinizationmethods are introduced which have some limitations (one inbehavior preserving and other in type of fuzzy operations). Inorder to eliminate these limitations and increasing theefficiency of FFTA, we defin...
متن کامل